Multi-variable Polynomial Solutions to Pell’s Equation and Fundamental Units in Real Quadratic Fields
نویسندگان
چکیده
Solving Pell’s equation is of relevance in finding fundamental units in real quadratic fields and for this reason polynomial solutions are of interest in that they can supply the fundamental units in infinite families of such fields. In this paper an algorithm is described which allows one to construct, for each positive integer n, a finite collection, {Fi}, of multi-variable polynomials (with integral coefficients), each satisfying a multi-variable polynomial Pell’s equation C i − FiH i = (−1)n−1, where Ci and Hi are multi-variable polynomials with integral coefficients. Each positive integer whose square-root has a regular continued fraction expansion with period n+1 lies in the range of one of these polynomials. Moreover, the continued fraction expansion of these polynomials is given explicitly as is the fundamental solution to the above multi-variable polynomial Pell’s equation. Some implications for determining the fundamental unit in a wide class of real quadratic fields is considered.
منابع مشابه
Polynomial Solutions to Pell’s Equation and Fundamental Units in Real Quadratic Fields
Finding polynomial solutions to Pell’s equation is of interest as such solutions sometimes allow the fundamental units to be determined in an infinite class of real quadratic fields. In this paper, for each triple of positive integers (c, h, f) satisfying c − f h = 1, where (c, h) are the smallest pair of integers satisfying this equation, several sets of polynomials (c(t), h(t), f(t)) which sa...
متن کاملOn the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملKronecker’s Solution of Pell’s Equation for Cm Fields
We generalize Kronecker’s solution of Pell’s Diophantine equation to CM fields K whose Galois group over Q is an elementary abelian 2-group. This is an identity which relates CM values of a certain Hilbert modular function to products of logarithms of fundamental units. When K is imaginary quadratic, these CM values are algebraic numbers related to elliptic units in the Hilbert class field of K...
متن کاملSolving Diophantine Equations via Lucas-Lehmer Theory
In this work we look at an approach to solving Pell’s equation using continued fractions and fundamental units in real quadratic orders. We demonstrate that there is an underlying general approach using Lucas-Lehmer methods for solving Pell and other quadratic Diophantine equations that is often overlooked in the literature. Mathematics Subject Classification: Primary: 11D09; 11A55; Secondary: ...
متن کاملC∗-algebras Associated with Real Multiplication
Noncommutative tori with real multiplication are the irrational rotation algebras that have special equivalence bimodules. Y. Manin proposed the use of noncommutative tori with real multiplication as a geometric framework for the study of abelian class field theory of real quadratic fields. In this paper, we consider the Cuntz-Pimsner algebras constructed by special equivalence bimodules of irr...
متن کامل